
Internship Report
May 19th- August 10th, 2014

Learning a Prior for Lifelong Visual Object Categorization

Royer Amélie
amelie.royer@ens-rennes.fr
perso.eleves.ens-rennes.fr/∼aroyer

Academic year 2013–2014
ENS Rennes, 2ème année

Département Informatique et Télécommunications

Advisor :
Lampert Christoph
CV&ML Group

Institute of Sciences and Technology,
Vienna, Austria

Abstract. When facing the task of classifying object images into categories, it can be useful to consider
the context of the past seen queries to infer knowledge on the future inputs, rather than only using
the immediate visual information of the object. In this work, we propose two combined algorithms
bringing together a state-of-the-art image classifier and an online-learning system which gradually learns
the intrinsic context of an input sequence. To evaluate these algorithms, we design three methods to
generate realistic sequences of queries; by “realistic”, we mean the object images are not uniformly
sampled but rather part of a joint context and semantically related. Our results establish that when
dealing with such a realistic sequence of images, this combined visual-contextual approach outperforms
the original classifier, by reducing the ambiguity on the classes.

Keywords: object recognition, image classification, domain adaptation, semantic context, online learning,
context modelling.

http://perso.eleves.ens-rennes.fr/~aroyer/

1 Introduction

Image classification is a major task in the field of machine learning, with applications in computer vision; given
a set of object categories, also called labels or classes, and a set of images, the goal is to design a system able
to correctly determine the (unique) category an image belongs to. Here we consider the multi-class form of
the task, i.e. classifying images into strictly more than two categories, as opposed to binary classification (only
2 classes). In recent years, the number of object categories, as well as the size of image databases have been
rapidly increasing. For example, the ILSVRC classification challenge1 is based on a subset of the ImageNet
database and contains 1.2 million training images for 1000 classes. Despite this challenging large-scale setting,
current state-of-the-art classifiers, such as convolutional neural networks [8], yield extremely good accuracies.

Fig. 1: Example of benefitting
from context inference.

In order to evaluate and compare such systems, one usually computes
the number of wrong classifications made by the classifier on an uniformly
random sample of images extracted from a subset of the image database
(namely, the testing set). However, in a real-life setting, the data is not
necessarily uniformly distributed, but rather the queries are part of a
joint visual context. We can illustrate this fact by imagining a sequence
of images generated by a mobile robotic system trying to categorize each
object it encounters; assuming the two last seen objects are a desk and a
chair, a human being could conclude that the current environment is an
office, and that the next objects will probably be related; thus categories
such as “computer desk” or “cupboard” have a reasonable chance to
appear soon, whereas “canoe” or “giant panda” seem less likely. It is
the same principle as guessing the sense of a word based on the context
of a conversation.

However, current classifiers do not make this kind of contextual infer-
ence. The main objective of this work is to incorporate this principle into
an existing classification system, in order to avoid predicting irrelevant
classes. In fact, a classifier generally only uses visual information to make
its decision; by providing it with this additional contextual material,
we aim to prevent mistakes that would seem incongruous for a human
being aware of the context (see Fig. 1).

Given a “realistic” query sequence, we want to learn its underlying
context, and combine it with the visual information provided by a classic
image classifier. Formulated in this way, the problem is strongly related
to the task of domain adaption: it deals with adapting a classification
system when the queries at training time (also called sources) are not
sampled from the same distribution as the queries received during testing
time (also called targets). For example, for spam filtering, the e-mail
examples used for training (source) might be entirely different from the
ones received by a particular user (target); the goal of domain adaptation
is to adapt the classifier to this user without having to entirely re-train it on this new target dataset. More
specifically, in our framework, we assume the images in the training set were uniformly distributed (thus
the source distribution is uniform), while the unknown target distribution, Pt, represents the context of the
realistic sequence we use at testing time.

Our goal is to gradually model this target distribution, or at least an approximation of it, as the classifier
observes new instances. This fits the framework of online learning: the classifier predicts a class for the current
input image, receives a feedback, and based on this information, updates its parameters. We first tackle the
fully-supervised setting of online learning, where the feedback received is the true label of the input; secondly,
we propose extensions of our algorithms in the reinforcement and unsupervised settings, where the feedback
is limited, or even worse, non-existent.
1 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), http://image-net.org/challenges/LSVRC/2014/.

1

http://image-net.org/challenges/LSVRC/2014/

In this work, our main contributions are two online learning algorithms that gradually build some
knowledge about the context only using the past seen labels, and then associate it with a standard image
classifier. They are explained in details in the third section. In the fourth section, we propose three different
methods to generate “realistic” sequences of object categories, and use them for evaluating our algorithms.
Finally, the last section contains experimental results and conclusions.

2 Related Work

The task we deal with is part of the general framework of online learning [2][9]. As for the specific problem of
learning a context, it is related to online sequence prediction [4][10], or more generally statistical language
models [18], where the objective is to learn the probability of appearance of a word in a text (or word
sequence). However many of these algorithms assume a particular structure on the data, which is not the
case in this work. For example, Marti et al. [11] combine a handwriting recognition system with an offline
statistical natural language model in order to improve the word recognition accuracy; this is suitable when
the words to recognize are organized in a regular sentence structure from the considered language.

In the framework of object recognition, several works have shown that adding a notion of semantic context
in object categorization tasks helps improve the classification accuracy by reducing the ambiguity on the
classes. For instance, it is applied in the task of image segmentation where the goal is to attribute a label
to each pixel in order to separate the different objects appearing in a picture. In [17], semantic context
information is incorporated in the image feature extraction step, which allows the classifier to use conceptual
relations between the object categories appearing in the image to make better decisions (e.g. an object lying
on water is correctly categorized as a boat with this method, while a non-contextual approach classifies it as
a building).

In the domain of classification, recent works make use of semantic-hierarchical databases. For example, Jia
et al. [5,6] use the ImageNet database, where object categories are linked by conceptual-semantic relations in
a hierarchy tree; given a small set of images of unknown categories, they infer the subtree of the hierarchy
they belong to (e.g. infer “dog” from images of different dog breeds). Identifying the correct subtree reduces
the ambiguity and improves the classification accuracy on these inputs. Contrary to our approach, it is not
part of the online-learning framework, since they directly infer a global context (the subtree) from a set of
queries, while we are interested in gradually building a model of the context when receiving the queries one
at a time. Furthermore, they always assume a hierarchical structure of the database.

Finally, Shimada et al. [20] propose a combined method for hand shape recognition which is similar to our
approach: the authors associate an offline recognition algorithm with an online classifier, which personalizes
the system for a given user without having to retrain the original offline recognition algorithm; however the
online learning algorithms used as well as the combination with the original classifier differ from ours.

3 Learning a Context

3.1 Problem Formulation

Denoting by X a set of images, and Y a set of classes (here we are in a multi-class setting, thus |Y| > 2), we
define a classification system as a function f : x ∈ X 7→ f(x) = (f1(x), . . . , f|Y|(x)) ∈ R|Y|. Given an instance
(x, y) ∈ X × Y, the classifier outputs a score fŷ(x) for each class ŷ in Y; a higher score means the classifier
considers the class is more likely to be the correct category of the input x. The final decision of f is then
defined as f∗(x) = arg maxŷ fŷ(x), the goal being to predict the right class (i.e. optimally, f∗(x) = y). In
this work, we are initially provided with an image classifier, f , and we assume the training set used to learn
f follows an uniform distribution; from a domain adaptation point of view, it corresponds to the source
distribution.

At test time, we consider a realistic sequence of N images and their ground truth labels, S = (xi, yi)N−1
i=0 ∈

(X × Y)N . We call a sequence realistic if the images, and therefore their labels, share some semantic-contextual

2

relations (for example a class A and a class B belonging to the same context would tend to often appear
together). Note that these relations do not need to represent reality: for instance, in the example from Alice
in Wonderland in Fig. 1, the context of the sequence is composed of watches and rabbits, which is generally
not a logical association for a human being, but it is considered a realistic sequence in this work because it is
consistent in the context of Alice in Wonderland.

Because of this “realism” hypothesis, we believe the queries are not uniformly distributed but follow some
unknown target distribution, Pt, that we informally refer to as the context of the sequence. More precisely,
we work in the setting of prior probability shift [16, Chapter 1]: this means the distribution of the labels
between training time and testing time changes , but the class conditional densities of the images are the same.
Formally, ∀x ∈ X , ∀y ∈ Y, Ps(y) 6= Pt(y) and Ps(x|y) = Pt(x|y) . Finally, we do not make any additional
parametric assumption about Pt: the shape of the distribution is not restricted, because this would not fit
the framework of realistic query sequences.

We aim to create a combined classifier, g, which incrementally learns the underlying context in S, and
associates this information with the output of the original classifier, f . Our algorithms follow a typical online
learning scheme: the combined classifier, g, receives the queries one at a time, and updates its knowledge of
the context at each round. The online learning literature often distinguishes three different feedback settings
(fully-supervised, reinforcement, unsupervised) that we describe in Fig. 2 below. Note that even though our
context model is updated and changes over time, the true context itself (Pt) is fixed.

For (xi, yi) in the sequence S

1. Compute g(xi) and predict class ŷi = g∗(xi) = argmaxy gy(xi).

2. Receive feedback:
(Fully Supervised)

Receive the correct label yi.

(Reinforcement)
Receive the boolean information

(yi == ŷi).
(Unsupervised)

No Feedback.

3. g updates its knowledge of the context based on the feedback.

Fig. 2: Feedback scenarios for online learning

Finally, we introduce the notion of top-k accuracy, which we use to evaluate the classification quality. It
assesses the fact that the correct label is among the k first labels output by the system. Formally, the top-k
accuracy of a classifier f on the sequence S = (xi, yi)i=0...N−1 is defined as:

acck(f) = 1
N

N−1∑
i=0

`k(xi, yi), (1)

where `k(xi, yi)
∆=
{

1 if yi is among the k labels with highest scores in f(xi),
0 otherwise.

We conjointly define the top-k error rate which is simply the dual notion, i.e. errk = 1− acck.

In the next subsection, we propose a model that learns a representation of the context only using the
past seen labels, as well as a reinforcement and unsupervised variant. Next, we introduce a more general
algorithm (and its reinforcement counterpart), which is inspired from classic online learning methods, and
uses the output of the classifier f to learn a confidence weight for each class; the last subsection contains two
extensions of the previous models. For each method, we first introduce the general framework, then we detail
how we learn context information, and finally we show how to combine it with the original classifier, f , to
obtain the final context-sensitive classifier g.

3

3.2 A Static Probabilistic Model
Motivation. Our first approach to tackle the problem is to define a context as a probability distribution over
the set of labels Y , and to gradually estimate it by using the information of the past seen labels: given a past
sequence of labels yn−1

0 , what is the chance of seeing some label y at time n ?
Formally, we build a probabilistic “context model”: θ : Y∗ → [0, 1]|Y|; for each label y, it outputs the

probability of seeing y after the current past sequence of labels, i.e. θy(yn−1
0) = P(y | yn−1

0). Since we build
θ through an online learning procedure, we denote by θn the context model at round n, but for simplicity we
often keep this index implicit: for example, θ(yi−1

0) implicitly refers to the context model at round i. The
same yields for the combined classifier g.

Combining a Context Model with a Classifier. In this paragraph, we assume the initial classifier f has
probabilistic output, i.e. fy(x) = P(y|x) ∈ [0; 1]. There exists several classification algorithms with probabilistic
outputs, or simply real-valued outputs that we can transform into probabilities, so this hypothesis is not too
restrictive in practice.

Let (xi, yi)i=0...(n−1) be the sequence of queries received up to round n, and xn be the next input image.
We assume we have a classifier f and a context model θ, both with probabilistic outputs. Using Bayes’ rule,
we can link fy(x) = Ps(y|x) with the estimated probability of seeing a given label in the sequence, Pt(y),
which is exactly the output of the context model.

The original classifier, f does not use the context to make its decision, it just assumes the labels are
uniformly distributed, i.e. they follow the source distribution Ps(y) = 1

|Y| ; hence applying Bayes’ rule yields:

∀y ∈ Y, f(xn)y = Ps(y|xn) =
Ps(xn|y)× 1

|Y|

Ps(xn) (2)

However, in reality, the context of the sequence of queries at testing time is represented by the target
distribution, Pt. Assuming our context model is an approximation of the real context of the query sequence,
we have Pt(y) ≈ θy(yn−1

0). Therefore Bayes’ rule yields the following:

∀y ∈ Y, Pt(y|xn) = Pt(xn|y)× θy(yn−1
0)

Pt(xn) (3)

As mentioned in the beginning of the section, we are in the prior probability shift setting of domain
adaptation, which means ∀x ∈ X , ∀y ∈ Y, Ps(y) 6= Pt(y) and Ps(x|y) = Pt(x|y). As for the distributions of
the images themselves, Ps(x) and Pt(x), they do not matter here, since we are only interested in the class
that maximizes the conditional probability according to the label y. Finally, by combining (2) and (3), and
getting rid of the terms that do not depend on y, we obtain :

∀y ∈ Y, Pt(y|xn) ∝ fy(xn)× θy(yn−1
0)

This conditional probability distribution over the labels in the target setting defines the combined classifier
at round n, g : x ∈ X 7→ (Pt(y|xn))y∈Y ∈ R|Y|; it depends both on the initial image classifier and on the
context model. In the three next paragraphs, we propose an algorithm to build the context model θ for the
three settings of online learning: fully-supervised, reinforcement, unsupervised.

Fully Supervised framework. We build a probabilistic context model θ by using a very natural estimation
rule; that is, to deduce the probability of seeing a label from its past frequency. Formally, we define θ at
round n as:

θy(yn−1
0) = P(y|yn−1

0) ∆= wn−1(y) + ε

n+ ε|Y|
wn is a vector counting the number of appearances of each label up to round n. The ε constant is a smoothing
term, which prevents giving a 0-weight to labels that have yet to appear in the sequence. Finally, we obtain a
probability distribution from the vector wn by dividing it by the sum of its components. We refer to this
approach as Multinomial Model. It is summed up in Fig. 3.

4

Data: S = (xN−1
0 ,yN−1

0), classifier f , smooth term ε
init: ∀y, w−1(y)← 0;
for n← 0 to N − 1 do

θy(yn−1
0)← wn−1(y)+ε

n+ε|Y| ;
predict
ŷn = g∗(xn) = argmaxy (θy(yn−1

0)× fy(xn));
receive yn;

∀y, wn(y)←
{
wn−1(y) + 1, if y = yn

wn−1(y), otherwise
end

Fig. 3: Supervised Multinomial Model

In practice we take ε = 1
2 ; first because

it achieves good experimental results, and
secondly because in this case the algorithm
is a multi-class extension of the Krichevsky-
Trofimov estimator [7], for which there exists
theoretical bound results [2, Chapter 9].

From a probabilistic point of view, this defi-
nition of θ is equivalent to saying that the labels
are distributed according to a multinomial dis-
tribution of parameter p, which we update at
each round by maximizing the likelihood of a
Dirichlet prior distribution, whose parameters
are the number of appearances of each label.

predict ŷn = g∗(xn) = argmaxy (θy(yn−1
0)× fy(xn));

receive correctn = (yn == ŷn);
if correctn then

∀y, wn(y)←
{
wn−1(y) + 1, if y = yn

wn−1(y), otherwise
else

∀y, wn(y)←
{
wn−1(y), if y = ŷn

wn−1(y) + 1
|Y|−1 , otherwise

end

Fig. 4: Reinforcement Multinomial Model

Reinforcement Framework. We ex-
tend the previous context model to the
reinforcement setting of online learning.
In this case, the algorithm does not re-
ceive the correct label yn, but only knows
if its prediction, ŷn = g∗(xn), was correct
or not. Thus the previous multinomial
update rule is not possible, because it re-
quires to know the true label, while here
the system only has this information in
the case where its prediction is correct
(yn == ŷn). This remark leads to the
following update rule:

– If the prediction ŷn is equal to the correct label yn, apply the ordinary update rule of the multinomial
model.

– Otherwise, we only know that the predicted label ŷn is wrong, and we assume all other classes have an
equal chance to be the correct one; therefore we increase the weights of every class, apart from ŷn, by the
same amount.

Note that contrary to the fully supervised case, this update rule depends on the original classifier f (because
it uses the prediction ŷn = g∗(xn) = arg maxy fy(xn)×θy(yn−1

0) for the update). Yet, the better the classifier
f , the greater the chance that ŷn is correct and that the update is the same as the multinomial model.
Therefore when the original classifier f has good accuracies, the reinforcement learning yields closer results
to the multinomial model. The new update rule is described in Fig. 4.

predict ŷn = g∗(xn) = argmaxy gy(xn);

∀y, wn(y)←
{
wn−1(y) + 1, if y = ŷn

wn−1(y), otherwise

Fig. 5: Unsupervised Multinomial Model

Unsupervised Framework. In this last setting,
the classifier does not receive any information from
the environment after its prediction. We choose to
assume the model is always correct, i.e. we always
update with the predicted label. The new update
rule is described in Fig. 5.

Finally, we can make the same remark as for the
reinforcement setting: the better the original classifier
f , the smaller the difference in results with the fully
supervised setting.

5

3.3 A More General Online Learning Approach

In this subsection we present a different approach for learning a context and building the combined classifier
g. The previous algorithm uses the frequencies of the past seen queries to model an approximation of the
unknown target distribution of the labels.

The drawback of this method is that it is, in a sense, “static”: if the label sequences we consider were
simply generated by independently sampling labels from the target distribution Pt(y) fixed during the whole
sampling process, then the multinomial model would approximate it perfectly when the size of the sequence
tends to infinity (by the laws of large numbers, the relative frequency of a label y converges to its exact
probability Pt(y)). However, we do not make any assumption about the generative process of our realistic
query sequences. For example in the case of a Markovian generative process, we cannot assume the labels
distribution Pt(y) is fixed during the whole generative process, because the probability of seeing a given label
depends on the state of the Markov chain we are currently in.

Therefore, we propose a more general context modelling algorithm which, contrary to the multinomial
model, does not have such a static behaviour, and should therefore be better fitted when the generative
process of the sequence is not fixed over time.

This second approach tackles the problem as a task of “expert weighting”. This refers to a wide category
of problems where we are provided with a set of experts (i.e. a set of functions which output a certain
decision) and the goal is to take the best decision given the experts advice. A commonly used algorithm is
the “weighted majority algorithm”: it aims at learning a weight for each expert and the final decision is a
weighted linear combination of the experts’ output.

In our framework, we define experts as follow: given an image x, for each class k, there is an expert Ek
which votes for class k with score fk(x) (the output of the original classifier for class k), and votes for other
classes with score 0 (i.e. no preference). If w is the weight vector learned by the algorithm, then the linear
combination of the experts’ outputs yields the following:

g(x) =
|Y|∑
k=1

wkEk(x) = w � f(x), where � is the component-wise multiplication of two vectors.

With this point of view, the weights we learn represent how much confidence we put in an expert given the
sequence of past seen queries. Note that each expert gives a non-zero score to its own class only; intuitively,
to fill in these zero entries we would need an information on the similarity between two classes, which we do
not have (and which, in a way, would correspond to a global semantic context between the object categories).

Data: S = (xN−1
0 ,yN−1

0), f , α
init: ∀y, w−1(y)← 1

|Y| ;
for n← 0 to N − 1 do

g(xn)← wn � f(xn);
predict ŷn = argmaxy gy(xn);
receive yn;
if yn 6= ŷn then
∀y, wn(y)←
wn−1(y)× eα(1−fy(xn)), if y = yn

wn−1(y)× e−α(1−fy(xn)), if y = ŷn

wn−1(y), otherwise
else

wn = wn−1
end

end

Fig. 6: Supervised Weighting Model

Fully Supervised. In order to learn the weight vector
w, we draw inspiration from the family of multiplicative
update algorithms (we update w by multiplying its com-
ponents at each round). More precisely, our algorithm
resembles Winnow [9]: it is conservative, i.e. we only
make an update when the classifier makes a mistake, and
we only modify the weights of the true label yn and the
wrongly predicted label ŷn. However, apart from this, the
algorithm differs from the classic Winnow.

The intuition of our update rule is that when a mistake
is made, the context knowledge (here represented by the
weight vector w) should “disagree” with the decision of the
original classifier f (here represented by the experts), to
show that the visual information was not sufficient. More
precisely, suppose the classifier g makes a mistake (ŷn 6=
yn); it means that the score of the predicted label is greater
than the one of the true label: g(ŷn) = wŷn

fŷn
(x) > g(yn).

6

First we need to update the weight of the true label; there are two cases: if the original classifier score fyn(xn)
was low, this means we must strongly increase the weight wyn , so that it counterbalances the low score given
by f . Conversely, if fyn

(xn) was already high, we do not need to increase the weight wyn
as much, since it

means the classifier f was quite confident in this class and thus it was not “too wrong”.
The same kind of reasoning applies for the update of the weight wŷn

of the predicted label. We finally
observe that the update is always in the “opposite direction” of the decision of the original classifier, and that
its amplitude depends on the score of the classifier. To express this, we take eα(1−fy(xn)) as update coefficient.
α > 0 is called the learning rate; in practice we simply take α = 1. We call the resulting model Weighting
model; it is summed up in Fig. 6.

receive correctn = (ŷn == yn);
if correctn then

∀y, wn(y)←
{
wn−1(y)× eα(1−fy(xn)), if y = yn

wn−1(y), otherwise
else

∀y, wn(y)←
{
wn−1(y)× e−α(1−fy(xn)), if y = ŷn

wn−1(y), otherwise
end

Fig. 7: Reinforcement Weighting Model

Reinforcement Approach. A drawback
of the Weighting model is that we need both
the predicted and true label to update it; for
this reason it is not possible to extend it to
the unsupervised framework, as we always
lack the information of the true label. For the
reinforcement approach, we keep the same
update rule as in the fully-supervised setting
but we only do the positive update (update
of the true label) when we are correct, and
the negative update (update of the wrongly
predicted label) otherwise. This update rule
is presented in Fig. 7.

Comparison to the Multinomial Model. As we stated previously, the main difference with the Multino-
mial model is that the Weighting update rule is conservative: when there is no mistake, the model doesn’t
change its parameters. Moreover, this update depends on the original classifier f directly, and we penalize
the predicted label in the case of a wrong prediction. Furthermore, note that contrary to the Multinomial
approach, the original classifier f does not need to have probabilistic outputs. Apart from this, we can unify
both methods; in fact, recall that we defined the combined classifier g for the Multinomial model in Sec. 3.2
as follow:

∀y ∈ Y, gy(xn) = Pt(y|xn) ∝ fy(xn)× θy(yn−1
0); which we rewrite in: g(xn) = w � f(xn) (4)

The second equation exactly corresponds to the definition of the combined classifier g in our second model.
Therefore a combined classifier with a probabilistic context model θ (our first approach) is a sub-case of the
combined approach with a weighting algorithm (our second approach); and in this case wny = θny (yn−1

0).

3.4 Extensions
In this subsection we present two extensions to the previous models which are more specific to the databases
we use in our experiments.

Unlearning Multinomial. As we mentioned, a drawback of the multinomial model is its “static” behaviour:
in practice the labels seen at the very beginning of the sequence have the same influence in the current
context model as newer labels, because the update rule is static. However this behaviour is harmful if, for
example, the label sequence was generated by a Markovian process, since in this case only the last seen labels
are important. In the Unlearning Multinomial Model, we add an “unlearning” step when computing the labels’
frequencies, in order to “forget” the oldest labels. In practice, we introduce a sliding window of a certain
length L on the sequence: we keep the same update rule as the Multinomial model, but we only consider the
frequencies of the labels among the last seen L labels (in practice L = 100), thus gradually suppressing the
influence of the oldest labels.

7

Fig. 8: Definition of p(x, y)

Using the Hierarchy as Additional Information. In the intro-
duction, we gave the example of “desk”, “chair” and “computer”,
which are three linked categories in real life, if the environment is
an office for example. However, up to now, we have not used such
real life assumptions about object categories to model a context. In
this paragraph, we assume our image databases are hierarchically
structured, which means the labels are connected to each other by
semantic relations; we incorporate this real life hierarchy information
in the Multinomial and Weighting models.

The Hierarchical Multinomial model uses the same update rule
as the fully-supervised Multinomial, but when updating the weight
wx for a label x, it propagates it to all labels y, with some coefficient
p(x, y). Figure 8 sums up how we define this coefficient: in the up-
phase, we recursively compute a weight between x and its parents
depending on their number of children. When reaching the lowest
common ancestor of x and y, we begin the down phase, which is just
a multiplication, and this finally yields p(x, y). These coefficients are
precomputed for efficiency reasons.

For the Hierarchical Weighting model, we develop an idea close to the Committe algorithm [12]. We use
the same update rule as the fully-supervised Weighting model, with an additional update for all other labels.
The idea is to increase their weight if they are close to the true label, and to down-weight it if they are close
to the wrongly predicted one. For this, we use our propagation weight p(x, y) as a similarity measure between
the labels (although not necessarily symmetric). This motivates the following supplementary update rule:
∀y /∈ {yn, ŷn}, wn−1(y)× eβ(p(yn,y)−p(ŷn,y)). In our experiments, we take β = 6 because it achieves the best
results, however finding an optimal value would require a more rigorous model selection.

4 Generating “Realistic” Sequences

We aim to show that when the sequence of query images sent to a classification system is somewhat structured
in a joint semantic context, then introducing a prior knowledge over the label distribution shows better results
than only relying on the visual information provided by the image classifier.

To highlight this fact, we first need to generate “realistic” ordered label sequences, i.e. sequences such
that two close labels are semantically related. For each label, an image from the corresponding class can then
be sampled, which results in a realistic sequence of input images. We now propose three generation processes
(1 real life + 2 synthetics) for such sequences.

4.1 The ImageNet Database

Fig. 9: Example of
Subtree in the

hierarchy. Categories
for the classification
task (i.e. leaves) are
represented by blue

boxes.

In practice, our databases are subsets of
the hierarchical ImageNet database, in which
the object categories are linked together by
semantic-conceptual relations. More precisely,
each dataset contains approximately 2000 ob-
ject categories: 1000 of them are used as labels
for the classification task and are leaves in the
hierarchy tree (i.e. |Y| = |{leaves}| = 1000),
while the rest is only used to shape the tree
structure. Because of the semantic relations,
lower nodes are sub-categories of higher nodes
(e.g. “pea” is a sup-category of “green pea”), and the higher a node in the tree, the vaguer the category (the
root node is “entity”). For the same reason, two nodes close in the hierarchy are conceptually related.

8

4.2 Generative Processes for Realistic Label Sequences

TXT Database. We generate the first dataset from real-life data: we browse a set of English books (classic
literature taken from the Project Gutenberg2), and sequentially extract each word corresponding to an object
category of the classification task. Beforehand, we apply a part-of-speech tagger, using the Python Natural
Language toolkit [1, Chapter 5], in order to only keep the nouns in the text. In fact, object categories in
classification tasks are, to our knowledge, grammatically nouns; this preprocessing step prevents us from
extracting unwanted homonyms as object categories (e.g. to watch / a watch, he saw / a saw).

The main drawback of this generation method, is that the number of retrieved object categories depends
on the level of details of the classification task. For instance, categories such as “black-footed ferret” do not
appear often in usual books, while larger categories like “dog” are easier to retrieve. We make use of the
semantic hierarchical structure of our databases to counteract this disadvantage. If the text contains a word
corresponding to one of the high-level nodes of the hierarchy tree, we extract it and randomly sample one of
the leaves of the corresponding subtree (e.g. when encountering the word “legume”, we randomly choose one
of the leaves in the corresponding subtree, such as “soy” for example). Furthermore, each object category
is given in the form of a synset, i.e. a list of semantically related words (for example [’wood rabbit’,
’cottontail’, ’cottontail rabbit’]), which provides us with more words to retrieve for each class. This
hierarchical structure is not necessary for the label sequence generation, but here it helps us generating longer
sequence of words, containing object categories which usually do not often appear in texts.

KS Database. For the two next generation processes, we assume we are provided with a semantic-hierarchical
image database (in our case, the ImageNet database). Taking advantage of this hierarchy, we define a distance
over labels as follow :

d(y1, y2) = height(lca(y1, y2))

where height(x) is the maximum path length from the node x to any of the labels (leaf nodes) in the hierarchy,
and lca(x, y) is the lowest common ancestor of x and y. The labels are then projected on a 2D-grid structure
using Kernelized Sorting [15], so that their placement respects this distance measure (see Fig. 10). In practice
we generate label sequences with a random walk on the grid (with 20% probability to go up, down, left, right
or stay in the current position).

Fig. 10: A subset example of a 2D-grid we obtained (on the left) and the corresponding colored clustering for
labels sharing the same subtree (of height 4) (on the right)

2 Project Gutenberg : Free e-books, http://www.gutenberg.org/wiki/Main_Page.

9

http://www.gutenberg.org/wiki/Main_Page

Fig. 11: A subset example of a projection with color
clustering for labels sharing the same subtree (of

height 4)

MDS Database. This dataset is based on the same
idea as the previous one, but uses a different projec-
tion method, namely Multi Dimensional Scaling [3]
(Scikit-learn implementation [13]), which is a classic
dimension reduction method focusing on respecting a
distance measure. As a result, each class is associated
to a point in R2 and a label sequence is generated
by doing a random walk on the k nearest neighbours
of a point (for the experiments we took k = 9 neigh-
bours, including the current point itself in the next
position possibilities). See Fig. 11 for an example.

4.3 Structure of Typical Sequences

(TXT) (KS) (MDS)

Fig. 12: Typical sequence structure for TXT, KS and MDS

From the structure of typical generated sequences (see Fig. 12), we observe each database has its own
characteristic. The MDS generated sequences tend to stay in the neighbourhood of one category (in the
example, hats): this comes from the fact that the 2D plot is usually very clustered, and the clusters themselves
are far away from one another. Therefore, when browsing the plot by nearest neighbours we generally stay
around the same point. On the contrary, the KS generative process can browse the whole 2D-grid. Therefore
the generated sequences tend to be “locally realistic” (seeing many images of wolves at some point for
example), but taken as a whole, the changes in categories are more frequent (in the example, we switch
from monkey to wolf to bear and back to monkey). Finally, the TXT database is a sort of trade-off between
those two characteristics: it also has a limited vocabulary, but is not restricted to one “theme” like the MDS
database. Furthermore we observe words burstiness which is a natural structure in texts: it means that once
a word appears in a text, it tends to appear a lot in the future, even if on average it is a rare word (in the
example, the word “rabbit” has such a behaviour).

To have a better understanding of the generated sequences’ behaviour, we plot the perplexity of the
Multinomial context model on the different databases. The perplexity is a measure of a language model
performance often used in information theory [19], it assesses how well such a model represents a word
sequence and how confident it is in its predictions. Transposing this notion in our framework where words are

10

object categories and texts are label sequences, we define the perplexity of a probabilistic context model θ on
a sequence yn−1

0 as:

Perp(yn−1
0) ∆= n

√
1

P(yn−1
0)

=
(
n−1∏
i=0

P(yi|yi−1
0)

)− 1
n

=
(
n−1∏
i=0

θiyi
(yi−1

0)
)− 1

n

Intuitively, a good context model should assign a high (if not the highest) probability to the correct next
label in the sequence. Therefore, a lower perplexity means the model successfully grasps the structure of the
sequence; a perfect model would always give a probability of 1 to the correct next label, and thus achieve a
perplexity of 1. On the contrary, a non-informative model does not make any assumptions and models an
uniform distribution; in this case the perplexity is equal to |Y|. It is the starting point of our Multinomial
context model. We first present the curves for the TXT and MDS databases (Fig. 13); for both, the perplexity
decreases very fast in the beginning, and more slowly afterwards. This shows that the context model gets
better over time, until reaching an “equilibrium state”.

(a) 100 TXT Sequences of varying lengths (b) 100 MDS Sequences; length 5000

Fig. 13: Mean Log-Perplexity on for the Multinomial Model TXT and MDS sequences

However for the KS database (Fig. 14 (a)), the perplexity initially decreases but then starts growing. We
reckon it comes from the fact that KS sequences are generated from a random walk on a grid, and may drift
far away from the initial point; thus the labels on the beginning of the sequence are not really part of the
current context, yet the Multinomial model still counts them with the same weight as the others. To tackle
this issue, we use the Unlearning Multinomial which only consider a subset of the last seen labels (sliding
window of size 100). As shown in Fig. 14 (b), its perplexity has a better curve progression.

(a) Multinomial Model; 100 Sequences; length 1500 (b) Unlearning Multinomial; 100 Sequences; length 1500

Fig. 14: Mean Log-Perplexity on KS sequences

11

5 Experiments

5.1 Experimental Setting

We conducted the experiments on two image databases that are subsets of the ImageNet hierarchy (ILSVRC2010
and ILSVRC2012). The first step is to choose the original classifier f . We do the experiments in two settings
to show that the results do not depend on the chosen classifier: first, we use the ccv3 toolkit and its pretrained
ImageNet classifiers. This system uses convolutional neural networks and already achieves state-of-the art
accuracies.

Secondly, we use the jsgd4 toolkit to train a classifier on the databases. Using the training set (1.2 million
images), we learn a multi-class SVM (Support Vector Machine) classifier: for each label y we train a SVM
binary classifier fy that separates the class y from all the other classes. The corresponding multi-class classifier
is given by f : x ∈ X 7→ (fy(x))y∈Y . However, SVMs do not output probabilistic scores, which we need to
build the Multinomial model; therefore we apply Platt Scaling [14], using 50K training images that were left
out during the training step as a cross-validation set: for each one of the binary classifiers fy, we learn the
parameters of a Sigmoid function which, when applied to the scores output by this classifier, transform them
into probabilities.

As for the classification task itself, we use 4 databases for label sequences: from the realistic label sequences
generation methods presented above, we use 100 TXT sequences (lengths vary approximately from 400 to
20000), 100 KS sequences of length 1500 and 100 MDS sequences of length 1500. The fourth set of sequences
contains 100 random label sequences of length 1500; it is denoted by RND and is used to show the effect of
our approach when there is no explicit context information in the image sequence.

The images we use come from the validation dataset (50K images) of the corresponding image database.
For each label yi we encounter in the labels sequence, we randomly sample an image xi among the images of
the corresponding class. This generates the testing sequence S = (xi, yi).

5.2 Results

In this section, we present and analyze the results obtained with the aforementioned experimental settings. In
Tab. 5, we present the top-1 and top-5 error rates (lower is better) for the ccv classifier combined with the
fully-supervised algorithms (Multinomial, Weighting and their extensions: Unlearning Multinomial, Hierarchy
Multinomial, Hierarchy Weighting) on the ILSVRC2012 validation dataset. As defined in Sec. 3.1, the top-k
error rate is the mean number of times the correct label of an image was not in the k labels with highest
score output by the classifier.

Table 1: Mean Top-1 and Top-5 Error Rates(%) (ILSVRC2012 dataset; ccv classifier; fully-supervised)

Classifier
Seq. Datab. RND 1-Err TXT 1-Err KS 1-Err MDS 1-Err RND 5-Err TXT 5-err KS 5-Err MDS 5-Err

Original (f) 38.5 ± 1.3 42.6 ± 3.0 38.9 ± 3.5 39.1 ± 9.2 16.5 ± 0.9 19.5 ± 1.8 17.0 ± 2.7 16.8 ± 6.4
Multinomial 43.0 ± 1.2 33.5 ± 3.0 36.5 ± 3.2 25.3 ± 6.5 18.8 ± 1.0 12.9 ± 1.8 14.6 ± 2.5 5.5 ± 2.4
Weighting 41.3 ± 1.4 35.4 ± 3.3 36.2 ± 3.0 28.3 ± 6.3 17.8 ± 1.0 14.2 ± 2.0 14.6 ± 2.2 6.8 ± 2.3
Unlearning Multinomial 40.1 ± 1.2 35.2 ± 3.2 32.7 ± 2.9 27.3 ± 6.5 17.2 ± 0.9 14.5 ± 1.6 12.3 ± 2.0 7.1 ± 2.6
Hierarchy Multinomial 40.5 ± 1.3 34.9 ± 2.6 34.9 ± 3.2 25.3 ± 6.3 17.6 ± 0.9 14.0 ± 1.5 13.8 ± 2.4 5.4 ± 2.1
Hierarchy Weighting 42.1 ± 1.4 36.5 ± 3.7 34.9 ± 2.7 30.5 ± 6.9 18.4 ± 1.0 15.0 ± 2.3 13.3 ± 1.8 8.1 ± 3.2

We first notice that the original ccv classifier alone already achieves state-of-the-art results (around 18%
top-5 error rate), thus acting as a strong baseline. For the RND database (where no clear context exists),
our different context-sensitive approaches make slightly more errors than the original classifier, which is to
3 “ccv: A Modern Computer Vision Library (ConvNet, Deep Convolutional Networks)”, http://libccv.org/doc/

doc-convnet/.
4 “JSGD: SGD for large-scale classification.”, http://lear.inrialpes.fr/src/jsgd/.

12

http://libccv.org/doc/doc-convnet/
http://libccv.org/doc/doc-convnet/
 http://lear.inrialpes.fr/src/jsgd/

be expected since we are enforcing a semantic context information which does not make sense in this case.
However the difference is very small (between +0.7 % and +2.3% error rate for top-5).

As for the realistic label sequences, we observe that all our algorithms yield similar results, and they all
outperform the original classifier. Furthermore, the improvement is often higher on the top-1 error (-13.8%
errors on MDS top-1 error). Overall the Multinomial model performs the best, especially on the TXT and
MDS databases. On the contrary, the best results on KS are achieved by the Unlearning Multinomial, which
shows that adding an unlearning step to reduce the influence of oldest labels does improve the results in this
case; in fact, by browsing the KS grid we may drift far away from the starting point, thus the oldest labels
are not representative of the context anymore.

In Tab. 2, we present the top-1 and top-5 error rates in the same setting but for the reinforcement scenarios.
As we stated in Sec. 3.2, because of the originally good performance of the ccv classifier, the reinforcement
models yield results very similar to the fully-supervised ones (approximately +2% erorr rate compared to
fully-supervised), and they outperform the original classifier on every realistic sequences dataset.

Table 2: Mean Top-1 and Top-5 Error Rates(%) (ILSVRC2012 dataset; ccv classifier; reinforcement setting)

Classifier
Seq. Datab. RND 1-Err TXT 1-Err KS 1-Err MDS 1-Err RND 5-Err TXT 5-err KS 5-Err MDS 5-Err

Original (f) 38.5 ± 1.3 42.6 ± 3.0 38.9 ± 3.5 39.1 ± 9.2 16.5 ± 0.9 19.5 ± 1.8 17.0 ± 2.7 16.8 ± 6.4
Reinforced Multinomial 41.0 ± 1.2 35.3 ± 2.9 38.2 ± 3.4 28.7 ± 8.2 17.7 ± 1.0 14.5 ± 1.7 16.0 ± 2.6 8.6 ± 4.6
Reinforced Weighting 39.2 ± 1.2 37.7 ± 2.1 37.7 ± 3.4 32.8 ± 6.9 16.8 ± 0.9 15.9 ± 1.6 16.4 ± 2.6 10.8 ± 4.6

Finally, Tab. 3 contains the results for the Unsupervised Multinomial. In terms of applications, the
unsupervised scenario is very interesting, because we do not always have access to all information about the
queries at testing time, thus the fully-supervised feedback setting is not possible. As for the reinforcement
setting, the Unsupervised model yield accuracies close to the fully-supervised Multinomial model (difference
of roughly 6%), and it still outperforms f on realistic sequences, apart from the KS sequences, which probably
comes from the fact that the fully-supervised Multinomial Model does not perform so well on this database
(contrary to the Unlearning Multinomial), thus its unsupervised counterpart does not yield good results either.
For better visualization of these error rates (ILSVRC2012; ccv), Appendix 1 contains the corresponding
whisker plots.

Table 3: Mean Top-1 and Top-5 Error Rates(%) (ILSVRC2012 dataset; ccv classifier; unsupervised setting)

Classifier
Seq. Datab. RND 1-Err TXT 1-Err KS 1-Err MDS 1-Err RND 5-Err TXT 5-err KS 5-Err MDS 5-Err

Original (f) 38.5 ± 1.3 42.6 ± 3.0 38.9 ± 3.5 39.1 ± 9.2 16.5 ± 0.9 19.5 ± 1.8 17.0 ± 2.7 16.8 ± 6.4
Unsupervised Multinomial 45.5 ± 1.3 40.0 ± 3.5 42.8 ± 3.7 32.3 ± 9.8 20.0 ± 1.0 17.3 ± 2.4 18.4 ± 3.2 10.6 ± 6.2

Lastly, in order to show these results do not depend on the initial classifier f , we present the error rates
obtained on the ILSVRC2012 dataset using jsgd in Tab. 4. Since the original jsgd classifier is not as good as
the ccv one, the improvement is often greater (-30% errors on MDS top-5 error). On the other hand, because
the original classifier is less accurate, the reinforcement and unsupervised models usually perform worse than
with ccv (roughly +15% error rate from fully-supervised Multinomial to unsupervised here). Apart from
this, the conclusions are generally the same as before: the Multinomial model yields the best results on the
TXT and MDS databases (although it is outperformed by the hierarchical Multinomial on MDS, but only by
0.1%). As for the KS sequences, the Hierarchy Weighting perform better. However, among the models who
do not use this hierarchy information, Weighting performs betters than Multinomial on KS. This show that
the simple Multinomial is not so well fit for the generative process of KS sequences.

Finally, Appendix 2 contains the error rates for the ILSVRC2010 dataset using the ccv and jsgd classifiers;
since they are very similar to these tables, we do not present them here.

13

Classifier
Seq. Datab. RND 1-Err TXT 1-Err KS 1-Err MDS 1-Err RND 5-Err TXT 5-err KS 5-Err MDS 5-Err

Original (f) 72.4 ± 1.4 70.0 ± 2.2 72.7 ± 2.6 71.7 ± 8.0 52.3 ± 1.4 50.1 ± 2.6 52.6 ± 3.0 51.3 ± 9.5
Multinomial 78.1 ± 1.1 60.3 ± 4.2 71.1 ± 2.6 52.8 ± 11.5 57.2 ± 1.5 38.0 ± 4.3 48.4 ± 3.2 23.1 ± 10.8
Weighting 77.4 ± 1.3 61.4 ± 4.7 66.5 ± 2.3 54.9 ± 9.8 56.2 ± 1.5 39.8 ± 4.3 43.6 ± 2.6 24.1 ± 8.9
Reinforced Multinomial 74.8 ± 1.1 63.6 ± 3.9 73.2 ± 2.7 60.6 ± 12.0 54.1 ± 1.4 43.7 ± 3.9 52.2 ± 3.3 36.9 ± 13.2
Unsupervised Multinomial 86.0 ± 1.1 74.6 ± 5.5 85.3 ± 2.6 69.9 ± 12.9 65.0 ± 1.5 54.8 ± 6.4 64.4 ± 3.8 47.4 ± 16.4
Reinforced Weighting 73.9 ± 1.3 64.2 ± 3.6 72.4 ± 2.8 64.7 ± 11.9 53.4 ± 1.4 45.2 ± 3.8 52.2 ± 3.2 44.3 ± 14.3
Unlearning Multinomial 75.5 ± 1.3 61.3 ± 4.5 64.7 ± 2.8 54.7 ± 9.9 54.5 ± 1.4 41.0 ± 4.0 41.7 ± 3.0 27.3 ± 9.1
Hierarchy Multinomial 76.1 ± 1.2 61.1 ± 3.6 69.7 ± 2.7 53.0 ± 11.0 55.0 ± 1.5 40.4 ± 3.2 46.9 ± 3.1 23.0 ± 10.3
Hierarchy Weighting 78.3 ± 1.2 63.0 ± 5.1 63.9 ± 2.6 55.9 ± 9.0 57.2 ± 1.4 41.5 ± 4.8 38.7 ± 2.6 23.8 ± 8.2

Table 4: Mean Top-1 and Top-5 Error Results on the ILSVRC2012 dataset using a jsgd classifier (%)

Conclusion

In this work, we studied image classification in the situation where the images to be classified come in a
semantically meaningful order. We showed that incorporating knowledge of the semantic context into the task
of classifying images improves the accuracy results in this setup. Context modelling can be seen as assigning a
weight to each label, which represents how likely a class is in the given context. We use contextual knowledge
to “guide” the visual classifier when needed. We have created three generative processes for realistic sequences,
each with their own characteristic. Finally, we have proposed two online learning algorithms for joint context
modelling and classification, and extend them to reinforcement and unsupervised settings. In every setting
we experimented, our approach outperforms the original classifier on the task of classifying images ordered
in a realistic sequence. Furthermore, when using an initial state-of-the-art classifier, the reinforcement and
unsupervised approaches yield very close results to the fully-supervised setting.

Possible future works include investigating more specific context modelling methods (e.g. prediction
suffix trees) or exploring situations where the data has a known particular structure (for example query
sequences generated by a Markov chain). Finally, it could be interesting to analyze these algorithms from a
more theoretical point of view, in the framework of online learning, in order to better understand the impact
and limits of this approach. More particularly, it is possible to investigate the trade-off between an accurate
context model, and a context model which combines well with a classifier. In fact, in this task we do not only
need the model to be a good approximation of the context, but also that the scores output by the model
do not influence the original visual classifier too much when multiplying them (because generally the visual
information is still more accurate than the contextual one, therefore the combination should not favor the
contextual decision).

Acknowledgements

First, I would like to thank my advisor, Professor Christoph Lampert, for his great help and availability during
this internship, as well as Hervé Jégou for recommending this internship to me. I also thank IST Austria for
the excellent working (and living) environment provided, and Elisabeth Hacker for her administrative help.

I am very thankful to the whole Computer Vision team and friendly people at IST for their warm welcome,
great moments of fun, and thrilling table soccer games.

Finally I would like to thank Mathias Fleury, Alix Trieu and Nathanaël Cheriere for reviewing earlier
versions of this report.

14

References

[1] S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O’Reilly Media, 2009.
[2] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. 2006.
[3] T. F. Cox and M.A.A. Cox. Multidimensional Scaling, Second Edition. Chapman and Hall/CRC, 2 edition, 2000.
[4] O. Dekel, S. Shalev-Shwartz, and Y. Singer. Individual sequence prediction using memory-efficient context trees.

IEEE Transactions on Information Theory, 55(11):5251–5262, 2009.
[5] Y. Jia, J. T. Abbott, J. L. Austerweil, T. L. Griffiths, and T. Darrell. Visual concept learning: Combining

machine vision and bayesian generalization on concept hierarchies. In NIPS, 2013.
[6] Y. Jia and T. Darrell. Latent task adaptation with large-scale hierarchies. In The IEEE International Conference

on Computer Vision (ICCV), December 2013.
[7] R. E. Krichevsky and V. K. Trofimov. The performance of universal encoding. IEEE Transactions on Information

Theory, 27(2):199–206, 1981.
[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks.

In NIPS. 2012.
[9] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Mach.

Learn., 2(4):285–318, April 1988.
[10] Y. Lomnitz and M. Feder. A universal probability assignment for prediction of individual sequences. In ISIT,

2013.
[11] U.-V. Marti and H. Bunke. Hidden markov models. chapter Using a Statistical Language Model to Improve the

Performance of an HMM-based Cursive Handwriting Recognition Systems, pages 65–90. 2002.
[12] C. Mesterharm. A multi-class linear learning algorithm related to WINNOW with proof. In NIPS, 2000.
[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[14] J. Platt. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In
Advances in Large Margin Classifiers, 2000.

[15] N. Quadrianto, L. Song, and A. J. Smola. Kernelized sorting. In NIPS. 2009.
[16] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence. Dataset Shift in Machine Learning.

The MIT Press, 2009.
[17] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie. Objects in context. 2007.
[18] R. Rosenfeld. Two decades of statistical language modeling: Where do we go from here? pages 1270–1278, 2000.
[19] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423, 623–,

july, october 1948.
[20] K. Shimada, R. Muto, and T. Endo. A combined method based on SVM and online learning with HOG for hand

shape recognition. JACIII, 16(6):687–695, 2012.

15

Appendices

Whisker Plots (CCV ILSVRC2012, Top-5)

This appendix contains whisker plots for the top-5 error rates on the ILSVRC2012 dataset using the pretrained
ccv classifier, with the setting presented in Sec. 5.1.

Here, red lines are the median values, limits of the boxes are the first and third quartiles, and the extreme
points are the minimum and maximum values.

Pr
ob

s

Mu
lti

no
m

ial
W

eig
ht

ing
Re

inf
or

ce
d_

Mu
lti

no
m

ial
Un

su
pe

rv
ise

d_
Mu

lti
no

m
ial

Re
inf

or
ce

d_
W

eig
ht

ing
Un

lea
rn

ing
_M

ult
ino

m
ial

Hi
er

ar
ch

y_
Mu

lti
no

m
ial

Hi
er

ar
ch

y_
W

eig
ht

ing

Method

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c-

5

RND_Means - all methods

Fig. 15: Mean Top-5 Error Rates on RND sequences
using ccv as initial classifier on ILSVRC2012

Pr
ob

s

Mu
lti

no
m

ial
W

eig
ht

ing
Re

inf
or

ce
d_

Mu
lti

no
m

ial
Un

su
pe

rv
ise

d_
Mu

lti
no

m
ial

Re
inf

or
ce

d_
W

eig
ht

ing
Un

lea
rn

ing
_M

ult
ino

m
ial

Hi
er

ar
ch

y_
Mu

lti
no

m
ial

Hi
er

ar
ch

y_
W

eig
ht

ing

Method

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c-

5

TXT_Means - all methods

Fig. 16: Mean Top-5 Error Rates on TXT sequences
using ccv as initial classifier on ILSVRC2012

Pr
ob

s

Mu
lti

no
m

ial
W

eig
ht

ing
Re

inf
or

ce
d_

Mu
lti

no
m

ial
Un

su
pe

rv
ise

d_
Mu

lti
no

m
ial

Re
inf

or
ce

d_
W

eig
ht

ing
Un

lea
rn

ing
_M

ult
ino

m
ial

Hi
er

ar
ch

y_
Mu

lti
no

m
ial

Hi
er

ar
ch

y_
W

eig
ht

ing

Method

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c-

5

KS_Means - all methods

Fig. 17: Mean Top-5 Error Rates on KS sequences
using ccv as initial classifier on ILSVRC2012

Pr
ob

s

Mu
lti

no
m

ial
W

eig
ht

ing
Re

inf
or

ce
d_

Mu
lti

no
m

ial
Un

su
pe

rv
ise

d_
Mu

lti
no

m
ial

Re
inf

or
ce

d_
W

eig
ht

ing
Un

lea
rn

ing
_M

ult
ino

m
ial

Hi
er

ar
ch

y_
Mu

lti
no

m
ial

Hi
er

ar
ch

y_
W

eig
ht

ing

Method

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c-

5

MDS_Means - all methods

Fig. 18: Mean Top-5 Error Rates on MDS sequences
using ccv as initial classifier on ILSVRC2012

16

Additional Error results (CCV and JSGD, ILSVRC2010)

Table 5: Mean Top-1 and Top-5 Error Rates(%) (ILSVRC2010 dataset; ccv classifier; all settings)

Classifier
Seq. Datab. RND 1-Err TXT 1-Err KS 1-Err MDS 1-Err RND 5-Err TXT 5-err KS 5-Err MDS 5-Err

Original (f) 34.5 ± 1.2 34.7 ± 2.5 34.7 ± 2.5 34.0 ± 6.9 14.6 ± 0.9 14.3 ± 1.5 14.5 ± 1.9 13.8 ± 5.2
Multinomial 38.4 ± 1.2 26.3 ± 3.1 32.9 ± 2.2 23.5 ± 7.6 16.3 ± 0.9 9.5 ± 1.7 12.5 ± 1.7 6.2 ± 5.0
Weighting 36.7 ± 1.2 27.7 ± 3.4 33.0 ± 2.0 26.3 ± 7.4 15.5 ± 0.9 10.4 ± 1.8 12.8 ± 1.6 7.4 ± 4.6
Reinforced Multinomial 36.8 ± 1.2 27.5 ± 3.0 34.3 ± 2.3 26.1 ± 8.6 15.5 ± 0.9 10.4 ± 1.8 13.7 ± 1.9 8.4 ± 6.6
Unsupervised Multinomial 40.4 ± 1.3 30.6 ± 3.2 37.8 ± 2.6 29.4 ± 10.3 17.3 ± 1.0 11.6 ± 1.9 15.3 ± 2.2 10.1 ± 7.9
Reinforced Weighting 35.0 ± 1.1 30.7 ± 2.1 33.8 ± 2.4 30.1 ± 6.7 14.7 ± 0.9 11.7 ± 1.5 14.0 ± 1.9 10.2 ± 5.6
Unlearning Multinomial 35.9 ± 1.2 27.6 ± 3.0 29.9 ± 2.1 25.2 ± 7.5 15.1 ± 0.9 10.5 ± 1.5 10.8 ± 1.5 7.5 ± 5.0
Hierarchy Multinomial 36.4 ± 1.1 26.7 ± 2.6 31.4 ± 2.1 23.3 ± 7.4 15.4 ± 0.9 10.0 ± 1.4 11.8 ± 1.6 6.0 ± 4.8
Hierarchy Weighting 37.4 ± 1.2 28.8 ± 3.5 31.9 ± 1.9 27.7 ± 7.6 15.9 ± 0.9 11.1 ± 2.0 11.9 ± 1.4 8.2 ± 5.2

Table 6: Mean Top-1 and Top-5 Error Rates(%) (ILSVRC2010 dataset; jsgd classifier; all settings)

Classifier
Seq. Datab. RND 1-Err TXT 1-Err KS 1-Err MDS 1-Err RND 5-Err TXT 5-err KS 5-Err MDS 5-Err

Original (f) 65.4 ± 1.2 61.1 ± 2.7 65.2 ± 2.6 63.3 ± 10.3 44.4 ± 1.2 39.3 ± 2.7 44.1 ± 2.6 42.6 ± 10.9
Multinomial 68.6 ± 1.1 48.6 ± 4.8 62.1 ± 2.7 45.0 ± 11.1 47.7 ± 1.2 29.2 ± 3.8 40.0 ± 2.9 18.0 ± 8.9
Weighting 68.0 ± 1.3 50.0 ± 4.8 59.8 ± 2.3 47.2 ± 10.1 47.0 ± 1.3 30.5 ± 3.8 37.3 ± 2.3 19.2 ± 7.9
Reinforced Multinomial 66.3 ± 1.1 50.8 ± 4.9 64.0 ± 2.7 50.4 ± 12.5 45.4 ± 1.3 31.9 ± 3.8 42.9 ± 2.8 27.1 ± 11.8
Unsupervised Multinomial 74.6 ± 1.6 58.5 ± 5.9 72.5 ± 3.5 56.5 ± 15.1 52.9 ± 1.4 37.7 ± 5.0 50.6 ± 3.5 32.4 ± 15.2
Reinforced Weighting 65.5 ± 1.1 52.5 ± 3.9 63.9 ± 2.6 54.9 ± 12.8 44.7 ± 1.3 33.4 ± 3.6 43.2 ± 2.6 33.1 ± 14.6
Unlearning Multinomial 66.4 ± 1.2 50.2 ± 4.6 57.4 ± 2.4 47.1 ± 10.0 45.6 ± 1.3 31.0 ± 3.5 34.7 ± 2.2 22.1 ± 7.7
Hierarchy Multinomial 67.0 ± 1.1 49.6 ± 4.2 60.9 ± 2.8 44.8 ± 11.0 46.2 ± 1.2 30.1 ± 3.1 38.8 ± 2.9 18.0 ± 8.6
Hierarchy Weighting 68.6 ± 1.3 51.2 ± 4.9 57.1 ± 2.3 47.6 ± 9.8 47.9 ± 1.4 31.5 ± 4.0 33.2 ± 2.3 18.0 ± 7.5

17

