

Monday p.m. Poster #32

Motivation

Image classification with semantic context

- Efficient state-of-the-art image classifiers
- Designed for and tested on i.i.d. datasets
- real-life \implies more information, semantic visual context

Objective: Adapt a pre-trained classifier on-the-fly at prediction time to a realistic image sequence

Contributions:

- Classifier adaptation scheme for three different settings: online, reinforced, unsupervised
- Dynamic adaptation for time-varying distributions
- Methods to generate sequences with realistic dependences

Results: Online adaptation increases accuracy

Background

Domain Adaptation Problem

- Label distribution at training time, P(y)
- Label distribution at prediction time, $Q(y) \neq P(y)$
- Objects' visual appearance unchanged: Q(x|y) = P(x|y)

Framework

• $f: \mathcal{X} \to \mathcal{Y}$, pretrained multiclass probabilistic classifier $f(\mathbf{x}) = \operatorname{argmax}_{\mathbf{v} \in \mathcal{Y}} f_{\mathbf{y}}(\mathbf{x})$ where $f_{\mathbf{v}}$ reflects $P(\cdot | \mathbf{y})$

Task: Adapt f to unknown label distribution Q(y) on-the-fly

Related Work

- Identify relevant subset of class hierarchy on-the-fly [1]
- Adjusting classifier outputs to reflect new class priors [2]

¹ ENS Rennes (Ecole Normale Supérieure de Rennes), Rennes, France ² IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria

Classifier Adaptation at Prediction Time

Class-prior adaptation

Definition. *g* is the Bayes-optimal class-prior adaptation of *f* at prediction time with $\boldsymbol{g}_{\boldsymbol{y}}(\boldsymbol{x}) = \frac{\boldsymbol{Q}(\boldsymbol{y})\boldsymbol{f}_{\boldsymbol{y}}(\boldsymbol{x})}{\boldsymbol{P}(\boldsymbol{y})}$ π_{y} : online estimation of the class distribution Q(y) (Bayesian approach + Dirichlet prior **Dir**(α))

$$\boldsymbol{g}(\boldsymbol{x}) = \operatorname{argmax}_{\boldsymbol{y} \in \mathcal{Y}} \boldsymbol{g}_{\boldsymbol{y}}(\boldsymbol{x})$$

 $n_i(y)$: number of occurrences of class y among the *i* first queries.

 $\pi_{y}^{(i)} = rac{n_{i}(y) + lpha}{i + lpha |\mathcal{Y}|},$ with $n_0(y)$

Three online update scenarios

(Online) $\delta_i(y) = [y =$ (Reinforced) $\delta_i(y) = \begin{cases} y = \\ v \end{cases}$

(Unsupervised) $\delta_i(y) = \mathbb{E}_{\bar{v} \sim Q_i}(y)$

Dynamic Adaptation

- *time-varying* data-distribution \Rightarrow no static label distribution to converge to.
- sliding window of limited size $L \Rightarrow dynamic$ adaptation to recent labels only

$$\pi_{y}^{(i)} = rac{\pmb{n_i}(\pmb{y}) + \pmb{lpha}}{\min(\pmb{i}, \pmb{L}) + \pmb{lpha}|\pmb{\mathcal{Y}}|},$$

Classifier Adaptation at Prediction Time

Amélie Royer¹, Christoph H. Lampert²

$$= \mathbf{0}$$
 and $\mathbf{n}_{i+1}(\mathbf{y}) = \mathbf{n}_i(\mathbf{y}) + \delta_i(\mathbf{y})$

$$\begin{array}{l} \textbf{y}_{i} \end{bmatrix} = \textbf{1} \text{ if } \textbf{y} = \textbf{y}_{i}, \text{ otherwise } \textbf{0} \\ = \textbf{y}_{i} \end{bmatrix}, & \text{ if } \textbf{y}_{i} = \textbf{g}^{(i)}(\textbf{x}_{i}) \\ \neq \textbf{y}_{i} \end{bmatrix} / (|\mathcal{Y}| - \textbf{1}), \text{ otherwise} \\ p_{i}(\bar{\textbf{y}}|\textbf{x}_{i}) (\llbracket \textbf{y} = \tilde{\textbf{y}} \rrbracket) = \frac{\textbf{g}_{y}^{(i)}(\textbf{x}_{i})}{\sum_{\tilde{y}} \textbf{g}_{\tilde{y}}^{(i)}(\textbf{x}_{i})} \end{array}$$

with
$$m{n}_i(m{y}) = \sum_{t=i-L+1}^i \delta_t(m{y})$$

she had never
"Alice in Wor
• MDS and K
(MDS: Multi
esking
saint berna
bouvier des flandres
great dane
doberman
boxer
Excerpts of th
• Pretrained
• Images from
• Realistic Se
KS, MDS (left)
• Realistic Se
KS, MDS (left)
• TXT 19.8
$$\pm$$
 1.9
MDS 16.1 \pm 6.5
KS 16.4 \pm 1.8
RND 16.5 \pm 0.6
Top-5 error rates w

(2)

Strengths simple and effective

- three different feedback scenarios
- works for arbitrary probabilistic classifiers guarantees only for online case

Generating Realistic Sequences

• TXT: Retrieve semantically ordered labels by browsing classical english books. 'Alice started to her feet, for it flashed across her mind that er before seen a <u>rabbit</u> with either a waistcoat-pocket, or a *watch* to take out of it' onderland" (L. Carroll) excerpt with ILSVRC2010 classes underlined

(S: Random walk on a 2D projection (ImageNet's LCA distance). tidimensional Scaling, KS: projection with Kernelized Sorting)

he MDS (left) and KS (right) projections for ILSVRC2010 classes.

classifier: CNN (CCV library) and SVM (JSGD toolkit) m ILSRVC2010 and 2012 validation datasets equences: 100 label sequences for TXT (average length 3475), ength 3000) + 100 random (RND) sequences.

	Online Feedback		Reinforcement		Unsupervised	
	Adapt	Dyn.	Adapt	Dyn.	Adapt	Dyn.
	$\textbf{12.8} \pm \textbf{1.9}$	14.5 ± 1.7	14.1 ± 1.9	16.4 ± 1.7	14.8 ± 1.8	16.4 ± 1.7
	5.2 ± 3.0	6.6 ± 2.6	6.1 ± 3.4	8.3 ± 3.3	6.8 ± 3.6	8.1 ± 2.9
	15.2 ± 1.7	11.8 ± 1.3	16.3 ± 1.8	13.8 ± 1.6	16.5 ± 1.7	14.2 ± 1.5
	18.7 ± 0.7	17.2 ± 0.6	18.5 ± 0.7	16.8 ± 0.6	18.0 ± 0.7	16.9 ± 0.6
vith the CNN classifier and ILSVRC2012 10-3 significant entries marked in hold						

Limitations

- only marginal class probability
- what if new classes appear?