Motivation

Transfer learning

- Fine-tuning all layers, or from scratch
- \rightarrow Efficient, but requires enough data, or else, overfitting risk
- Fine-tuning last layer
- \rightarrow Assume similar visual inputs, otherwise, limited benefit

Orthogonal scenario?

- Similar semantics (e.g. classes), different visual domains \rightarrow Common for applications with noisy data sources, e.g. noisy, blurry, rotated images...
 - \rightarrow Data augmentation requires knowledge before training

Objective: Extend the common fine-tuning scheme to adapt intermediate *individual* units for visually dissimilar domains

Flex-tuning

- Model selection criterion based on validation accuracy.
- Early stopping to avoid overfitting bias

• Complex behavior depending on (i) data amount and (ii) the severity of the domain shift. But, beneficial in several scenarios.

A Flexible Selection Scheme for Minimum-Effort Transfer Learning Amélie Royer, Christoph H. Lampert

Fast and Faster Flex-tuning

Fine-tuning all models to perform model selection is **costly**. Instead, we want to estimate how important each unit is with a lightweight and fast selection criterion.

Fast Flex-tuning:

• Fine-tune all the layers of the model on the given training target dataset • Estimate the influence of each unit by *network surgery* on the validation set $\phi_i = f^1 \circ \cdots \circ f^{i-1} \circ f_{i-1}^i \circ f^{i+1} \circ \cdots \circ f^N$

Faster Flex-tuning:

• Fine-tuning all layers is impossible or detrimental (overfitting) in data-scarce settings, hence, unreliable estimates.

• Instead, train the networks for only a few epochs: Not fully trained, but representative of the general gradient direction.

Qualitative Results

Institute of Science and Technology Austria, Klosterneuburg, Austria

Experiments

Conclusions

 Classification accuracy in different data scarcity scenarios • Different domain shifts and associated network architectures • Three baselines: fine-tuning last layer (ft-fc), all layers (ft-all) and extra scaling-shifting operations (ft-ss) [1].

Faraat domaine			flex			ft-			
arger uomains			flex	fast	faster	fc	SS	all	
	ratio: 2 images per class								
S S	Art	(0.53)		0.669	0.703	0.655	0.626	0.630	0.628
	Cartoor	n(0.32)		0.639	0.683	0.593	0.618	0.647	0.507
	Sketch	(0.14)	A	0.625	0.606	0.414	0.554	0.581	0.337
	ratio: 20 images per class								
	Art	(0.53)		0.870	0.851	0.861	0.729	0.849	0.724
	Cartoor	n(0.32)		0.912	0.893	0.841	0.820	0.887	0.709
	Sketch	(0.14)	A	0.852	0.638	0.638	0.766	0.801	0.542
	ratio: 200 images per class								
	Art	(0.53)		0.906	0.906	0.823	0.791	0.887	0.746
	Cartoor	n(0.32)		0.958	0.956	0.952	0.868	0.956	0.925
	Sketch	(0.14)	A	0.924	0.924	0.890	0.767	0.916	0.875

• Small architectures: Fine-tuning all (4, 6) layers is often more beneficial. ft-flex recovers ft-all

• Local pixel-level transformations: Fine-tuning an early layer of the architecture yields the best results

• Art style transformations: More complex patterns, often captured by more than one unique unit

• [+] Fine-tuning an intermediate unit is beneficial in domain shifts with different visual inputs and similar semantics

• [+] Fast and faster selection criteria to compensate the fact that we have to estimate which unit is best to tune

• [-] So far, the study is limited to similar output domains, e.g. target classes form a subset of the source classes