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Fast and Faster Fex-tuing

Transfer learning e Classification accuracy in different data scarcity scenarios

Fine-tuning all models to perform model selection is costly. Instead, we want to | o , .
e Fine-tuning all layers, or from scratch estimate how important each unit is with a lightweight and fast selection criterion. e Difierent domain shiits and associated network architectures

— Efficient, but requires enough data, or else, overfitting risk e Three baselines: fine-tuning last layer (ft-fc), all layers

e Fine-tuning last layer rast Flex-tuning: (ft-al11) and extra scaling-shifting operations (ft-ss) [1].

e Fine-tune all the layers of the model on the given training target dataset

— Assume similar visual inputs, otherwise, limited benefit | | , o | ox oo
| e Estimate the influence of each unit by network surgery on the validation set Source Target domains ILSVRCI .. . (.ot faster fo  ss  all
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Objective: Extend the common fine-tuning scheme to adapt e Instead, train the networks for only a few epochs: Not fully trained, but ratio: 200 images per class
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intermediate individual units for visually dissimilar domains representative of the general gradient direction. Sarioon(0.32) @[0.65310.056 | 0.562 10.55810.98810.522
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beneficial. ft-flex recovers ft-all

e Model selection criterion based on validation accuracy. ' 0a] NN | s : Y W faster-flex EoneCone + Cal _ _ , ,
. . - . % % FD?\ ft-fc EoneCone e Local pixel-level transformations: Fine-tuning an early layer
e Early stopping to avoid overfitting bias

. . , . o2 4se 7 01234567 01234567 01234567 ft-all EailCall of the architecture yields the best results
e Complex behavior depending on (1) data amount and (/i) the e Art style transformations: More complex patterns, often
severity of the domain shift. But, beneficial in several scenarios. . . |
captured by more than one unigue unit
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