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Training procedure

Image colorization Model likelihood as quantitative metric
e Grayscale image — colored image We use the model likelihood p(X2°|X"™) during training (maximization)
e Multiple plausible "ground-truth” results and for evaluation (model selection)

Current shortcomings Chrominance distribution

e We model the ab-color distribution as a mixture of 10 logistic
components, which are parametrized by 100 outputs

e We sample X2 at one-fourth resolution and upscale it for the
colorized image

i
=
Lo el |

Discrete colorspace Desaturated samples Architecture

e g" is a feed-forward network with 30 convolutional layers

Proposed model 0 " . . . .
e ¥ is a conditional Pixel CNN++ architecture with 8 residual blocks

e Exploit a meaningful feed-forward embedding

e Small autoregressive generative component Qualitative results on ILSVRC2012

e Proper probabilistic framework for sampling _
e Model likelihood as a quantitative metric PIC prodlu.ces col_fu.l and dl\(erse samples_

Background

Colorization task

e Input: Grayscale image Xt (luminance channel)
e Output: Distribution over the ab chrominance, p(X2°|X")

Main issues

e Continuous output space
e One-to-many problem
e No consensus on a quantitative metric

Related Work

e Colorization with a feed-forward CNN [1]
e Autoregressive generative models [2]

Probabilistic Image Colorization Workflow
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Failure cases
P1C might fail to capture long-range pixel interactions in complex scenes

L —
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Additional experiments

Ablation: Autoregressive component
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Original image X Grayscale input X* Sampled X3P Gray input Colorization
Autoregressive probabilistic models ~ PIC Likelihood: 2.51, CNN Likelihood: 4.53
Model. We use the chain rule to decompose the probability distribution Comparison to baselines

over pixels in the colorized image:

[1]

Gray Ours Original

N
p(X*|x*) = [ pOX21X32,_ s X1

=17
i=1

Sampling. SaAmpIing IS done iteratively, pixel by pixel (raster order)

starting from X2° ~ p(X2°|X") and then

Vi, Xiab ~ p(x,ab‘j\(fb . XL)
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Network architecture
POXPIXP2,_ i Xb) = £(X{°,_y; " (X")), where
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Conclusions

g" is a conditioning CNN which outputs an embedding of X*

f? is an autoregressive network, which outputs a multimodal discrete
distribution over the colorspace

[+] Rigorous probabilistic framework for colorization
[+] Likelihood serves as a principled evaluation metric
[+] No ad-hoc heuristics are required
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