

XGAN: Unsupervised Image-to-Image Translation for Many-to-Many mappings

<u>Amélie Royer</u>, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole, Kevin Murphy

Domain Adaptation for Visual Understanding Workshop Stockholm, July 13rd, 2018

Introduction

(style)

Style Transfer = image-to-image transfer

Two objectives
Style representation ~ Texture
Content representation ~ Structure

Semantic Style Transfer = corpus-level + feature-level style

(content)

High-level goal
Transfer the style from one domain to another conditioned on the input content

Main difficulties

- No quantitative evaluation of the generated samples (Inception Score...)
- Lack of supervision (paired samples ? semantic labels ?)

Datasets and Applications

Toy Dataset (SVHN → MNIST)

Main Dataset (Face → Cartoon)

VGGFaces

CartoonSet
public release at:
google.github.io/cartoonset/

Other Examples...

Face

Drawn Portraits

Dog (PASCAL)

Paintings (VGG)

Related Work

CycleGANs: Cyclic Consistency (+ DualGAN, DiscoGAN)

"Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", Zhu et al., ICCV'17

CycleGANs: Cyclic Consistency (+ DualGAN, DiscoGAN)

"Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", Zhu et al., ICCV'17

CycleGANs: Cyclic Consistency (+ DualGAN, DiscoGAN)

"Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", Zhu et al., ICCV'17

- Learn both mappings simultaneously
- Cycle-consistency loss: $G_{2\rightarrow 1}$ o $G_{1\rightarrow 2}$ = id

- [✓] Self-supervised method
- [×] Two distinct generators, no sharing
- [×] In practice, pixel-level structure hard to modify

"Unsupervised Cross-Domain Image Generation", Taigman et al., ICLR'17

"Unsupervised Cross-Domain Image Generation", Taigman et al., ICLR'17

Fixed encoder, pre-trained on Face recognition

"Unsupervised Cross-Domain Image Generation", Taigman et al., ICLR'17

First loss: Reconstruction loss for inputs from the target domain

"Unsupervised Cross-Domain Image Generation", Taigman et al., ICLR'17

Second loss: semantic consistency loss at the feature-level

"Unsupervised Cross-Domain Image Generation", Taigman et al., ICLR'17

- Fixed pre-trained encoder
- Feature-level consistency

- [✓] Feature-level transformation
- [✓] Semantic consistency loss
- [X] Fixed encoder for **both** domains

Proposed Model

Proposed Model - «XGAN» ("Cross-GAN")

Intuition

- Learn a joint embedding on both domains
- Cross-domain encoder/decoder pair

Supervision

 Self-supervision: the transformation should be invariant under the embedding

Domain-adversarial auto-encoder

Reconstruction losses

Embeddings encode **enough information** to reconstruct the inputs perfectly

Domain-adversarial loss

Embeddings should lie in a common subspace

Domain adversarial Neural Network

"Domain Adversarial Training of Neural Networks", Y.Ganing et al., JMLR'16

Classifier c_{DANN} distinguishes
 between embeddings from D₁ or D₂

 Adversarial training via gradient reversal layer (very stable in practice)

Semantic consistency

Semantic consistency loss D₁ → D₂

The learned embedding is preserved through the domain transformation: **Feature-level self-supervision**

And its mirrored counterpart D₂ → D₁

Optional refinements

GAN loss (add discriminator D_{1→2})

Produce realistic source → target samples

Teacher network (e.g., FaceNet)

Incorporate prior semantic knowledge from the source domain

Qualitative experiments

Comparison with baselines

	CycleGAN	DTN	XGAN
Mappings	both	D _{1 → 2}	both
Shared representation	No	Fixed	Yes
Supervision	None	Fixed embedding	Optional teacher network
Transformation	Pixel-level	Feature-level	Feature-level

Baseline 1 - CycleGAN

 The CycleGAN setting (Pix2Pix/U-Net architecture) enforces strongly similar pixel structures

Example test samples when transferring Faces to Cartoon with CycleGAN. With longer training or a deeper Encoder (e.g. Resnet) we obtain better (more cartoon-ish) samples but with no semantic correspondences to the input face.

Baseline 2 - DTN

 The fixed encoder (FaceNet here) cannot bridge the visual shift between the two domains (Face and Cartoon)

[✓] **SVHN** → **MNIST** (1350 iterations) The embedding captures the input number's class across the two domains (MNIST *acc* ~ 0.7)

[×] Face → Cartoon (200k iterations)

The fixed embedding does not generalize well across these two very different domains

Results - XGAN (Source to Target)

64x64 Samples (generated from the test set)

Typical failure cases

Hair mis-match (e.g., shades of red and grey are over represented in the training set)

Hair hallucinations

wrong skin tone (lighting?)

Understanding the learned embedding

Source -> Target direction also gives intuitive insights in the model

Experiments (Active losses: L_{DA}, L_{Rec})

Failure cases

Low capacity models fail at reconstructing the inputs

DA classifier is too powerful

Necessary for realistic target outputs: preliminary success criterion

Random samples

In practice, good reconstructions and domain adversarial balance are easy to achieve without extensive tuning

Experiments (ablating the teacher loss)

Teacher supervision

- Constrain the embedding to more realistic faces
- But harder to tune: High weights lead to lack of variability

With teacher loss, without semantic consistency

With semantic consistency, without teacher

Understanding the learned embedding

Nearest Neighbor search

- Compute query embedding ●
- Search NNs ●in the embedding space
- Pass ●through both decoders (visualization)

Top-4 neighbors in $\mathbf{e_1}(\mathbf{D_1})$ Top-4 neighbors in $\mathbf{e_2}(\mathbf{D_2})$

Conclusions

- The **domain adversarial** setting and **semantic consistency** losses contribute to learning an embedding relevant to both domains
- Using a GAN framework further improves the sample quality but makes the training unstable
- Teacher supervision brings useful supervision at a small cost
- Application to more general domain adaptation framework with quantitative evaluation in future work

Thank you for your attention

Questions ? Suggestions ?

Appendices

Additional remark 1: Multi-class DANN

In practice, 4 classes rather than 2:

- e₁ // e₂: Shared embedding
- e₁ // e₁ o d₁ o e₂ and e₂ // e₂ o d₂ o e₁:
 Embeddings after transfer lie in the same subspace ~ Weak semantic consistency

=> Multi-class DANN (or multiple binary DANNs)

Additional remark 2: Layer Sharing in the Autoencoder

Low-capacity

Partial symmetric sharing

More flexibility in the generated samples, but slower to converge to good quality samples

Fully shared encoder

Good quality (crisp) samples but semantics are not always well preserved

Fine-tuned DTN

- Experiment: Training/fine-tuning the embedding
- Hard to tune, and no control over the initial domain

[\checkmark] **SVHN** \rightarrow **MNIST** (1350 iterations) Samples quality is improved (MNIST $acc \sim 0.86$)

[~] Face → Cartoon (80k iterations)
Some semantic properties are better captured
(e.g., gender, skin tone)

Related Work - UNIT

- The mappings are learned as two VAEGANs with a common representation.
- Two GAN objectives
- Two VAE objectives (in particular, include reconstruction losses)

[Pros

- Natural sampling from the VAE framework
- Learned **joint representation** of the two domains

[X] Cons

- No explicit constraint on the shared embedding
- Pixel-level objective

"Unsupervised Image-to-Image Translation Networks", Liu et al., arXiv'17

Experiments (Active losses: all +/- L_{GAN})

Without GAN, the samples look good at first (left) but lack diversity in the long run (right)

Adding the GAN loss (left) and discriminator thresholding (right)

- Reasonable sample quality without discriminator loss but adding the GAN objective yields crisper samples
- The discriminator is typically very powerful right from the start
 → only train if accuracy is below a certain threshold

Experiments (Active losses: all)

Semantic consistency

 Both directions give insight on what the embedding is learning

 Could potentially be used as a criterion for model selection (self-supervision)

Source to Target

Target to Source

Test samples with lowest (top) and highest (bottom) semantic consistency distance (face → cartoon)

"Unsupervised Cross-Domain Image Generation", Taigman et al., ICLR'17

Second loss: semantic loss at the feature-level

The VisDA dataset

Synthetic Domain (labeled) [source]

12 classes, unbalanced set (~8k per class), grayscale 3D models.

Real Domain (unlabeled) [target]

Varied natural images from the same object classes as the source dataset

The VisDA dataset

Real Domain (unlabeled) [target]

Varied natural images from the same object classes as the source dataset

Adding supervision for the VisDA setting

- Classification "task tower" on top of the embedding for the source labels
- ImageNet pre-trained teacher network on the target domain

ightarrow Two conflicting supervision sources:

Alternating training scheme

Adding supervision for the VisDA setting

- Classification "task tower" on top of the embedding for the source labels
- (optional) ImageNet pre-trained teacher network on the target domain

→ Two conflicting supervision sources:

Alternating training scheme

Adding supervision for the VisDA setting

- Classification "task tower" on top of the embedding for the source labels
- ImageNet pre-trained teacher network on the target domain

 \rightarrow Two conflicting supervision sources:

Alternating training scheme

Results

- As expected: Classifier overfits to the source dataset
- However: the adaptation losses were not enough to bridge the gap sufficiently (0.45 acc.)
- The teacher network is mandatory in this setting (0.2 acc, no other entry, track cancelled...)

