evaluation_retrieval module¶
evaluation_retrieval.py: Evaluation for the KNN task using Information retrieval measures.
Usage:
python evaluation_retrieval.py [1] -s [2] -ov [3] -cfg [4] --helpwhere:
- [1] : input similarity matrix (unnormalized similarities or pre-treated MCL format). The script expects a ‘exp_configuration.ini’ file in the same folder, usually generated when using
main.py.- [2]
-s: number of samples to evaluate (sfirst samples of the ground-truth). If -1, the use the whole set. Defaults to -1- [3]
-ov: If positive, assume the resulting script was obtained in OVA mode for the sample of indexov. Defaults to -1.- [4]
-cfg: provide a custom configuration file to replace ‘exp_configuration.ini’.-h, --helpThis outputs the results of the neighbour retrieval evaluation on the given matrix.
-
evaluation_retrieval.evaluate(data_type, co_occ, label_to_index, index_to_label, ground_truth, output_folder, samples=-1, ova=-1, writing=True, idtf=None, suffix=None)¶ Evaluates the KNN task on the given similarity matrix and ground-truth
- Args:
datat_type(str): Dataset used in the experiments (for ground-truth parsing).co_occ(ndarray): co-occurrence matrix.label_to_index(dictt): Reverse mapping of index_to_label.index_to_label(list): list mapping an index to the corresponding named entity; used to generate a readable clustering.ground_truth(dict): ground truth clustering to compare against.output_folder(str): path to the output folder.samples(int, optional): evaluation on the firstsamplessamples (if -1, evaluation of all queries). Default to -1.ova(int, optional): if non negative, evaluation on the sampleovaonly. Defaults to -1.writing(bool, optional): ifTrue, outputs the resulting measures in a file. Defaults to True.